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Abstract

In traditional hydrogeological investigations, one geological model is often used based
on subjective interpretations and sparse data availability. This deterministic approach
usually does not account for any uncertainties. Stochastic simulation methods address
this problem and can capture the geological structure uncertainty. In this study the
geostatistical software TProGS is utilized to simulate an ensemble of realizations for a
binary (sand/clay) hydrofacies model in the Norsminde catchment, Denmark. TProGS
can incorporate soft data, which represent the associated level of uncertainty. High
density (20 m x 20 m x 2m) airborne geophysical data (SkyTEM) and categorized bore-
hole data are utilized to define the model of spatial variability and for soft conditioning
the TProGS simulations. The category probabilities for the SkyTEM dataset are derived
from a histogram probability matching method, where resistivity is paired with the cor-
responding lithology from the categorized borehole data. A novelty of this study is the
incorporation of two distinct datasources into the stochastic modeling process that rep-
resents two extremes of the conditioning density spectrum; sparse borehole data and
abundant SkyTEM data. The high density of spatially correlated SkyTEM data lead to
very deterministic simulation results. This is caused by overconditioning and addressed
by a work around utilizing a resampling (thinning) of the dataset. In the case of abun-
dant conditioning data it is shown that TProGS is capable of reproducing non-stationary
trends. The stochastic realizations are validated by five performance criteria: (1) sand
proportion, (2) mean length, (3) geobody connectivity, (4) facies probability distribution
and (5) facies probability — resistivity bias. As conclusion, a stochastically generated set
of realizations soft conditioned to 200 m moving sampling of geophysical data performs
most satisfying when balancing the five performance criteria and can be used in sub-
sequent hydrogeological flow modeling to address the predictive uncertainty originated
from the geological structure uncertainty.
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1 Introduction

Constraints in accurate and realistic solute transport modeling hydrogeology are
caused by the difficulty of characterizing the geological structure. The subsurface het-
erogeneity heavily influences the distribution of contaminants in the groundwater sys-
tem. The available data are often not sufficient to reflect the heterogeneity correctly.
As the scale of heterogeneity is often smaller than the data availability (e.g. borehole
spacing) a detailed characterization of the heterogeneity can substantially improve the
model quality. In traditional hydrogeological studies, one geological model is built based
on the best comprehensive knowledge from often sparse borehole data and subjective
interpretations. This can lead to alleged correct results, for instance when addressing
the water balance on catchment scale, but will often prove to be inadequate for simu-
lations beyond general flows and heads, e.g. contaminant transport modeling. There-
fore, it is proposed by numerous studies that the uncertainty on the geological con-
ceptualization is crucial when assessing uncertainties on flow paths (Neuman, 2003;
Bredehoeft, 2005; Hojberg and Refsgaard, 2005; Troldborg et al., 2007; Seifert et al.,
2008). One of the strategies often recommended for characterizing geological uncer-
tainty and assessing its impact on hydrological predictive uncertainty is the use of
multiple geological models (Refsgaard et al., 2012). In this respect geostatistical tools
such as TProGS (Carle and Fogg, 1996; Carle et al., 1998) and multipoint statistics
(Strebelle, 2002) are powerful tools as they enable the generation of multiple equally
probable realizations of geological facies structure. This study targets the realistic de-
scription of heterogeneity in a geological model by introducing diverse data into the
modeling process with the overall aim to reflect the geological structure uncertainty by
generating a set of equally plausible realizations of the subsurface using TProGS.
Geostatistics is able to tackle the above mentioned problem (Refsgaard et al., 2006).
Multiple plausible realizations of the geological model are generated, that honor both,
the available data and a defined model of spatial variability. Next to TProGS and
multi point statistics, sequential Gaussian simulations (Lee et al., 2007) and variogram
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geostatistics (Gringarten and Deutsch, 2001) are widely used to generate subsurface
models. TProGS has been successfully applied to simulate highly heterogeneous sub-
surface systems by constraining the simulation to borehole data (Carle et al., 1998).
Weissmann et al. (1999), Weissmann and Fogg (1999) and Ye and Khaleel (2008)
use additional spatial information obtained from soil surveys, sequence stratigraphy
and soil moisture, respectively for accessing the complex lateral sedimentary variabil-
ity and thus improving the quality of the model of spatial variability. Recent studies by
Lee et al. (2007) and dell’Arciprete et al. (2012) highlight that TProGS is compatible
with other geostatistical methods like, multi-point statistics, sequential Gaussian sim-
ulations and variogram statistics. The distinct strength of TProGS is the simple and
direct incorporation of explicit facies manifestations like mean length, proportion and
(asymmetric) juxtapositional tendencies to other facies.

In TProGS field observations can constrain the simulation as soft or hard condi-
tioning. “Hard conditioning” forces the realizations to honor data completely whereas
“soft conditioning” honors the data partly in respect to the uncertainty of the obser-
vation (Falivene et al., 2007). This feature is essential because it enables the user to
associate uncertainties to the conditioning dataset that can be of either subjective or
objective nature. The information on geological structures can be greatly improved by
applying geophysical methods, such as SkyTEM (Christiansen and Christensen, 2003;
Jorgensen et al., 2003b; Sorensen and Auken, 2004; Auken et al., 2009), an airborne
transient electromagnetic method. This study utilizes a method that translates SkyTEM
observation data into facies probability which enables to associate the geophysical data
with softness, according to the level of uncertainty.

Until now there are no published studies on the incorporation of a comprehensive
and continuous soft conditioning datasets to a stochastic simulation such as TProGS.
Alabert (1987) published an early study on the implications of sparse soft condition
data to a stochastic simulation (SIS). The analysis shows that soft conditioning sig-
nificantly increases the quality of the realizations. The same observation is presented
by McKenna and Poeter (1995), where soft condition data, derived from geophysical
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measurements could significantly increase simulation performance. It has not been
tested whether stochastic models, especially TProGS, are capable of handling abun-
dant soft conditioning data. Moreover, the risk that a cell-by-cell soft dataset may cause
an overconditioning of the simulation has not been fully investigated.

Geophysical datasets are valuable information in many hydrogeological investiga-
tions. It can considerably improve the conceptual understanding of a facies or hydraulic
conductivity distribution and identify non-stationary trends. Stationarity assumes that
the same statistical properties are applicable over the entire domain. Seifert and
Jensen (1999) approach the problem of simulating a non-stationary system in TProGS
by subdividing the simulation domain into stationary sub-domains with independent
models of spatial variability and hard conditioning along the seamlines to ensure good
connectivity. We are not aware of stochastic studies focusing on non-stationarity that
tests if a comprehensive soft conditioning dataset representing the observable non-
stationary trends is capable of reproducing these accordingly.

Most stochastic studies only make relatively simple validations of how well the sim-
ulations are able to reproduce known geostatistical properties. Carle (1997) and Carle
et al. (1998) investigate the goodness of fit between the simulated and the defined spa-
tial variability. The geobody connectivity is used by dell’Arciprete et al. (2012) to com-
pare results originating from two- and multipoint geostatistics. However no guidance
on which performance criteria to use and how to conduct a systematical validation of
a stochastic simulation exists. Complex stochastic simulations using comprehensive
conditioning datasets pose additional challenges in this respect.

The objectives of this study are: (1) to setup TProGS for a study site based on litho-
logical borehole data and high resolution airborne geophysical data and investigate
the effect of the two distinct conditioning datasets to the simulation; (2) to assess the
problem of overconditioning in a stochastic simulation; (3) to ensure that non-stationary
trends are simulated accordingly by TProGS; and (4) to identify and test a set of per-
formance criteria for stochastic simulations that allow the validation of simulation accu-
racy against geostatistical properties derived from field data. The results of the present
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study are intended for application in a hydrological modeling context (Refsgaard et al.,
2014).

2 Study site

Figure 1 shows the 101 km? Norsminde catchment, located on the east coast of Jut-
land south of Aarhus. The topography allows a separation between an elevated west-
ern part, with changing terrain and a maximum elevation of 100 m and a flat and low
elevated eastern part, where the coastline represents the eastern boundary. Glacial
morphologies, namely moraine landscapes are predominant in most of the catchment.
Gravel, meltwater-sand and clayey and sandy tills are prevalent in the Norsminde
catchment. The stratigraphy consists of an upper layer of glacial sediments, varying
in thickness between 10 and 40 m. Lithological borehole descriptions from this layer
indicate an alternating facies distribution of sand and clay. The thickness of the sand
lenses varies from less than a meter to 20 m. A layer of Miocene sediments lies beneath
the glacial sediments and consists of a heterogeneous sand and clay system. Below
is a sequence of Paleogene clay, which is characterized by very plastic properties and
very low hydraulic conductivity. This study focuses on the stochastic simulation of a de-
lineated glacial structure in the western part of the Norsminde catchment. It provides
interesting challenges like distinct heterogeneity and a diverse terrain.

3 Data

Two different sources of data, namely lithological borehole data and airborne based
geophysical data (SkyTEM) are used, where the former is utilized to describe the ver-
tical sand and clay variability and the latter for assessing the lateral direction.
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3.1 Borehole data

The borehole dataset contains 112 borehole logs with varying depths. The descriptions
in the borehole reports are converted to a categorical binary (sand/clay) system at
5 cm vertical discretization. Further each borehole’s uncertainty is validated (He et al.,
2013). The uncertainty assessment allows defining individual trust scores and thus
the definition of how much each borehole should constrain the conditional simulation
in the form of soft data. Drilling method, age, purpose of drilling, among others are
used as variables to ensure a systematic approach to validate the uncertainty of each
individual borehole. The boreholes are grouped into four quality groups with 100, 95,
90 and 85 % as trust scores. The classified borehole dataset states an overall sand
proportion of 30 %.

3.2 Geophysical data

The geophysical dataset comprises resistivity data from SkyTEM helicopter surveys.
The SkyTEM method has been extensively used for subsurface mapping in Denmark
(Jorgensen et al., 2003a, 2005), where it has proven to be a successful tool for hydro-
geological investigations. SkyTEM data have the advantage of a high spatial resolution
in the top 20 to 30 m and at large spatial coverage. However, some studies rise concern
about the accuracy of interpretations of deep soundings (Andersen et al., 2013). In the
Norsminde catchment data were collected at 2000 flight km containing over 100 000
sounding points. The distance between the flight lines is between 50 and 100 m. The
dataset is processed with a spatially constrained inversion algorithm (Schamper and
Auken, 2012) giving a 3-D distribution of the underground resistivity. The sounding data
were interpolated to a 20m x 20m x 2m grid domain by using 3-D kriging as the inter-
polation method. The gridded resistivity data can be utilized as a proxy for lithology, as
high and low resistivity cells indicate a high probability of sand and clay, respectively.
The SkyTEM dataset covers approximately 85 % of the delineated glacial sequence.
Figure 2 shows the spatial variation of the median resistivity for a 4- and a 16- subarea
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grid. Higher median resistivity values are located in the southern part of the glacial
sequence. This indicates a greater sand proportion in the given areas. The conclu-
sion of the spatial pattern in Fig. 2 is that stationarity cannot be attested to the glacial
sequence. This will have implications for the stochastic simulation.

The exact sand proportion can be derived by introducing a cut off value that divides
the SkyTEM dataset into a sand and a clay fraction. Jorgensen et al. (2003b) estimate
resistivity thresholds to differentiate between sediments in buried valleys in Denmark.
Accordingly, glacial sand has a resistivity greater than 60 Qm whereas clayey till sed-
iments are placed between 25 and 50 Qm and thus the exact cut off value varies be-
tween study sites. He et al. (2013) developed a method to manually calibrate the cut
off value by comparing borehole with SkyTEM data at different spatial domains with
the aim to reduce the deviation in sand proportion between the two data. It is assumed
that the deviation has to be minimized at domains with a high borehole density where
the boreholes are assumed to best represent the domain conditions. It is shown that
a borehole density of 2 per km? reduces the representative error and that 46 Qm as
cut off value reduces the deviation in sand proportion between the two datasets. The
calibrated cut off value yields a sand proportion of 23 %.

Further He et al. (2013) developed a histogram probability matching method that en-
ables a direct translation from resistivity into facies probability. Resistivity is paired with
the lithological borehole description at the coinciding cell. The data pairs are grouped
in 10 Qm bins and for each bin the sand/clay fraction is first calculated and then plot-
ted as a histogram. 3rd order polynomial curve fitting is applied to the histogram and
the manually calibrated cut off value is superimposed to the fitted curve (Fig. 3). The
shape of the curve reflects the combined uncertainties from both datasets. The flat-
ness of the transition zone, around 50 %, sand probability indicates a high uncertainty
for the corresponding resistivity values.
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4 Methods
4.1 TProGS - Transition Probability Geostatistical Software

The geostatistical software TProGS is applied in this study. It is based on the tran-
sition probability (TP) approach (Carle and Fogg, 1996; Carle et al., 1998). Continu-
ous Markov Chain models (MCM) are used to represent the model of spatial variabil-
ity (Krumbein and Dacey, 1969; Carle and Fogg, 1997; Ritzi, 2000). TProGS allows
for the simulation of multiple realizations by utilizing a sequential indicator simulation
(SIS) (Seifert and Jensen, 1999) and by performing simulated quenching (Deutsch and
Cockerham, 1994; Carle, 1997). These two steps are mutual dependent and they make
sure that the realizations honor local conditioning data as well as the defined model of
spatial variability.

The major advantage of TProGS is that fundamental observable attributes are pa-
rameterized in the modelling process: volumetric fractions (proportions), mean lengths
(thickness and lateral extent) and (asymmetric) juxtapositional tendencies. These at-
tributes can be assessed by data analysis and geological interpretations and control
the shape of the MCM model. The facies proportion is related to the asymptotic limit
of the MCM. The mean length is indicated on a plot of auto-transition probabilities as
the intersection of the tangent at the origin with the x axis. Asymmetric juxtapositional
tendencies are of interest when simulating a system with at least three categories and
can thus be neglected in this study. TProGS computes the realizations of the geology in
two uncoupled, but mutually dependent steps. An initial configuration of facies distribu-
tion is produced by the SIS algorithm (Deutsch and Journel, 1992). Secondly, the initial
configuration is reshuffled by the simulation quenching optimization algorithm (Deutsch
and Cockerham, 1994). The TProGS simulation domain of this study is discretized into
20m x 20m x 2m cells on a 450 x 600 x 40 cell grid. The horizontal transition probabil-
ities (TP) are based on SKkyTEM data, that is categorized by a cut off value of 46 Qm
and the vertical extent is purely based on borehole data.
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4.2 Split sample test

The two incorporated conditioning datasets are very distinct and will affect the simu-
lation in opposite ways: sparse borehole data allow large simulation freedom whereas
dense SkyTEM data limit the simulation freedom. Naturally they will be combined in or-
der to condition the simulation to the best combined knowledge of the system. However
it is of interest to know how each individual conditioning dataset affects the simulation.
In this context a split sample test can reveal valuable information: one simulation condi-
tioning to purely borehole data and the other one conditioned to purely SkyTEM data. It
will be tested how well the simulations conditioned to borehole data reproduce the high
resistivity cells, where a high sand probability is evident and how well the simulations
conditioned to SkyTEM data reproduce the locations with borehole information.

4.3 Moving sampling

Most studies on stochastic modeling condition the simulation to sparse data. In this
study a comprehensive cell-by-cell soft conditioning dataset is applied and it is antici-
pated that this may result in overconditioning, because the correlation length is much
larger than the cell length. Thinning the conditioning dataset out is a very intuitive sam-
pling approach to work around the problem of overconditioning. However, if the resam-
pled conditioning dataset is too sparse, information from the original dataset might not
be sufficiently accounted for. Opposed to the static sampling technique a moving sam-
pling method, where different location grids are sampled in a systematic way to build
the conditioning datasets, ensure that most possible original information is retained in
the resampled soft conditioning dataset. For this study five different soft datasets are
extracted, all equipped with the same sampling distance between data. Five realiza-
tions are computed for each soft dataset; giving a total of 25 realizations. In addition
to the comparison between moving and static sampling, different sample densities will
also be tested.
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4.4 Sampling scenarios

In total, eight conditioning scenarios are tested in this study. For the split sample test
two scenarios are used, namely purely borehole data (“onlyBH”) and purely cell-by-
cell SkyTEM data (“onlySky20”). In the following both datasources are combined to
represent the optimal combined knowledge of the system. Further, static and moving
sampling are applied: Borehole data and SkyTEM data sampled statically at 20, 100,
200 and 500m (“BH-SkyZ20static”, “BH-Sky100static”, “BH-Sky200static’ and “BH-
Sky500static”, respectively). Moving sampling is tested at 100 and 200 m sampling
distance (“BH-Sky100moving” and “BH-Sky200moving’, respectively).

4.5 Performance criteria

The simulation domain of TProGS is rectangular and SIS and quenching ensure that
the predefined geostatistical properties (mean length and proportion) are accounted
for. However, in reality the simulation target is a 3-D body within the rectangular model
domain. Thus the geostatistical parameters may deviate between the simulation target
and the entire model domain. The glacial structure in the Norsminde catchment repre-
sents only approximately 20 % of the entire TProGS simulation domain and deviations
in simulated spatial statistics between the entire model domain and the simulation tar-
get are expected.

4.5.1 Sand proportion

The deviation between the mean simulated sand proportion and the defined sand pro-
portion in the MCM can be calculated for a set of realizations. The focus should be
on the target area only, the area that will be extracted from the rectangular model do-
main for subsequent applications. The analysis of the sand proportion is based on 25
realizations.
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4.5.2 Mean length

The simulated mean length can be estimated by recalculating the TPs from the TProGS
output for the target area only. The simulated TPs for a set of realizations can be aver-
aged (10 realizations in this case) and compared with the measured TPs to estimate
the deviation in mean length between the predefined and the mean simulated length.

4.5.3 Geobody connectivity

The degree of connectivity of permeable areas in the subsurface has major implications
for flowlines and particle ages. Renard and Allard (2013) conducted a methodology
study on various static and dynamic connectivity metrics. These metrics can be utilized
as a comparison and interpretation indicator for multiple stochastically generated real-
izations of the geology. The work by dell’Arciprete et al. (2012) shows the successfully
implementation of connectivity metrics to compare stochastic realizations computed by
two- and multi-point statistics.

For this study two static connectivity metrics, 8 and I', are selected. They refer to the
first and second geobody connectivity defined by Hovadik and Larue (2007). A geobody
is defined as one connected 3-D cluster of the same facies.

Y
0=— (1)
2 Y
i=0
n 2
ro T 2
(2o ¥)

where V; is the volume of an individual geobody, n is the number of unconnected geo-
bodies and V is the volume of the largest occurring geobody. 8 represents the ratio of
the volume of the largest geobody to the total volume. Denoted as I is the proportion of
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the pairs of cells that are connected among the entire pairs. The two selected connec-
tivity metrics originate from the percolation theory, which describes the transition from
many disconnected clusters to one large coherent cluster. This is mainly depending on
the facies proportion. As the proportion gradually increases it reaches a point where
one big cluster appears. The percolation threshold is expected to be approximately
0.59 and 0.31 for a 2-D and 3-D grid, respectively (Hovadik and Larue, 2007). Mean
values of 8 and I' are computed based on 10 realizations.

4.5.4 Facies probability distribution

The facies probability distribution reflects the inter variability among a set of realiza-
tions and can be extracted from a probability map. Each cell in the probability map
reflects the simulated category probability within a set of realizations. The comparison
between the distribution of the original soft dataset, which constrains the simulation
and the simulated facies probability distribution, allows validating the performance of
the simulation. Ideally the distribution of the original soft dataset is reproduced by the
simulation, which does not allow assumptions concerning the accuracy of the allocation
pattern of the simulated facies probability.

4.5.5 Facies probability — resistivity bias

The validation of the facies probability — resistivity bias depicts if the simulated facies
probability corresponds to the fitted curve derived from the histogram probability match-
ing method, and thereby test whether the simulated facies probability is according to
the resistivity pattern. The simulated facies probability value is paired with the coin-
ciding resistivity value of the gridded SkyTEM dataset. The pairs are grouped in 5Qm
bins and the median values of simulated facies probability can be plotted for each bin.
Further the RMSE can be calculated between the simulated facies probability and the
fitted curve at each bin in order to quantify the agreement.
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5 Results
5.1 TProGS setup

The computed transition probabilities (TP) and the fitted Markov Chain model (MCM)
for both horizontal and vertical direction are given in Fig. 4. A sand proportion of 23 %
and a mean length of a sand lens of 5 and 500 m for vertical and horizontal direc-
tion respectively yield MCMs that are in good agreement with the measured TPs. Fig-
ure 2 indicates an increasing gradient in sand proportion from north to south. This non-
stationary trend is also shown in Fig. 4 where the additional sand-sand transition MCMs
are plotted that fit measured TP data from the northern and southern subdomain; de-
fined by 13 %, 2m, 400m and 30 %, 5m and 600 m respectively. 25 realizations are
generated based on the MCMs that are specified in Fig. 4.

5.2 Split sample test

Two sets of 25 realizations are computed. The entire conditioning dataset is split into
two parts, in order to analyze the effect of both extremes of the conditioning spectrum:
Abundant data (onlySky20) and sparse data (onlyBH).

5.2.1 Visual comparison

Figure 5 presents two individual realizations (a) and (b) and the resulting probability
maps (c) and (e) from both conditioning datasets at an elevation of 49 m. Examining
the individual realizations reveals that the spatial variability is much greater for the
onlyBH scenario results. This is reasonable, because the amount of constraining data
is also much less. This conclusion is supported by the probability maps. The proba-
bility map computed from the onlySky20 conditioning scenario shows only little inter
variability among the 25 realizations and resembles almost a deterministic image. The
onlyBH scenario simulates a probability map that shows high inter variability among
the computed realizations, but the high probable sand areas do not coincide with the
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high resistivity areas in the SKkyTEM data (d), because many large sand features are
not captured by borehole data. On the other hand, some high probable sand features
in the onlyBH scenario are not represented by the onlySky20 scenario, because small
sand features that are indicated by the borehole data are not detected by the SkyTEM
survey.

5.2.2 Quantitative comparison

High resistivity areas are defined by a minimum resistivity value of 60 Qm which is
equivalent to 70 % probability of sand occurrence based on the fitted histogram curve
in Fig. 3. The results of the split sample test are given in Table 1. The onlyBH sce-
nario allocates only 20.1 % of the high resistivity cells accordingly. Also, only 74.3 %
of the cells, where the lithology in the borehole reports shows sand are simulated cor-
respondingly. Some of the borehole data are treated as soft data, which enables the
simulation to overwrite the lithological information, during the SIS and the simulated
quenching. This will happen especially when sand lenses are very thin and vertically
confined by clay. The onlySky20 scenario simulates 44 % of those cells accordingly
and allocates almost all high resistivity cells as sand. However, almost 60 % of the high
resistivity cells are simulated with 100 % sand probability. This is in poor agreement
with field data, because the fitted histogram curve does not exceed sand probability
values higher than 85 % (Fig. 3). The SkyTEM dataset indicates a large high resistivity
cluster in the south-west at an elevation of 49 m (Fig. 5), which is not detected at all by
the borehole dataset, because there is only one borehole penetrating this area.

5.2.3 Local comparison

Figure 6 shows the vertical profile of one borehole (99.918) that penetrates the sand
cluster and compares the simulation results from the onlyBH and onlySky20 scenarios.
The borehole has a trust score of 95 %. While both datasets agree on the top layer be-
ing sandy and the occurrence of a thick clay layer below 75 m followed by a sand layer,
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they disagree on the location of the deeper sand layer. In the borehole data this sand
deeper sand layer is detected at an elevation of 45 m and below, whereas the SkyTEM
dataset indicates sand occurrence approximately 8 m higher; 53 m and below. This dis-
crepancy between 45 and 53 m has considerable implications for the simulation results
at 49 m shown in Fig. 5. However, one borehole alone will not be sufficient to substan-
tially influence the simulation over large areas. Marginal amplification of the onlyBH
scenario is noticeable at borehole 99.918. On the other hand, sand probabilities are
clearly amplified in the onlySky20 scenario; everything above 0.5 is amplified close to
1.0 and everything below 0.5 close to 0. The results from Table 1 and Figs. 5 and 6
support the assumption of overconditioning caused by the comprehensive cell by cell
soft conditioning.

5.3 Overconditioning

The observed problem of overconditioning is caused by spatially correlated data which
are incorporated into the modeling process. A very intuitive approach to work around
the problem of overconditioning is thinning of the SkyTEM dataset by only sampling
part of it. This will only be necessary in horizontal direction because the correlation
length of the data is much less in the vertical direction. There is a tradeoff between
the correctly simulated facies probability and the accuracy of the spatial allocation pat-
tern. To illustrate this tradeoff three resampled conditioning scenarios are compiled:
100, 200 and 500 m sampling distance in X and Y direction and at the same time also
including the boreholes for conditioning. For each of the three conditioning scenarios
(BH-Sky100static, BH-Sky200static and BH-Sky500static, respectively) 25 realizations
are computed and the probability maps for sand are presented in Fig. 7. The simulated
probability maps of the BH-Sky100static and BH-Sky200static conditioning scenarios
are visually almost identical. Therefore only the latter is shown (d) and the image is
already less deterministic than the results by the BH-Sky20static scenario (c). Reduc-
ing the conditioning data density increases the uncertainty of sand or clay. But at the
same time the accuracy of correctly locating sand or clay units decreases, because the
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BH-Sky500static scenario (e) shows high probable sand areas which are not indicated
by the original dataset (b). If for instance a high resistivity cell embedded in low resis-
tivity cells is sampled for the conditioning, this cell may generate a sand lens in the out
thinned conditioning scenario but would be limited by the neighboring cells in the BH-
SkyZ20static scenario. The moving sampling method can improve the spatial coverage
of the conditioning datasets and thus improve the quality of a set of realizations.

Again, the high resistivity cells are investigated to analyze if the bigger sand lenses
are simulated correctly by the different conditioning datasets (Table 2). It is evident
that the percentage of deterministically simulated cells falls drastically after thinning
the soft data out. The 100 m distance scenarios still allocates more than 80 % of the
high resistivity correctly. On the other hand, the BH-Sky500static performs poorly, by
only simulating 32.7 % of the high resistivity cells correctly. It is also evident that the
differences between static and moving sampling are small with regard to the correct
allocation of the higher resistivity cells.

5.4 Performance criteria

For further validation of the different sampling distances (20, 100, 200 and 500 m) and
sampling schemes (static and moving) the five identified performance criteria will be
applied to quantify the quality of the simulations.

5.4.1 Sand proportion

Table 3 shows the defined sand proportions of the delineated glacial structure. In order
to investigate non-stationarities the model domain is additionally subdivided into north
and south. The SKyTEM dataset indicates a higher sand fraction in the southern part
compared to the north, 30 and 13 % respectively. The simulated sand proportions for
the BH-Sky20static scenario show a good agreement with the defined values. Larger
deviations are evident for the BH-Sky200moving scenario. Both conditioning scenarios
are capable of reproducing the non-stationarity of the system, in regard to the sand
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proportion. The sand proportions are somewhat overestimated for BH-Sky200moving
scenario, and much less for the BH-SkyZ20static scenario. Also the overestimation of
simulated sand proportion in the northern subarea is larger than in the southern sub-
area.

5.4.2 Mean length

The comparison of the early (first lag = 100 m) measured and simulated TPs for the
sand-sand transitions in X and Y direction allows to validate how well the lateral mean
length is simulated by TProGS. Figure 8 comprises the measured TPs in horizontal
direction, the fitted MCM and the computed mean TPs for the BH-Sky20static scenario
and BH-Sky200moving scenario, based on 10 realizations, for the total and the sub-
domains. The effect of overconditioning is very evident, as the computed mean TPs
based on 20 m sampling conditioning data purely represent the original measured TP
values. Since no simulation freedom is present, the MCM cannot control the output. On
the contrary, the BH-Sky200moving scenario computes mean TPs that are more inde-
pendent from the original data and rather follow the defined MCM. The mean length of
a sand lens can be derived by the steepness of the tangent where the lag approaches
zero. In general, the TP at lag 0 and 100 m are simulated too low; indicating that the
simulated mean size of a sand lens is too small. This is more prominent in results by the
BH-Sky200moving scenario. It is evident that the non-stationarity of the mean length
of a sand lens is represented accordingly, although it is undersimulated at all domains.

5.4.3 Geobody connectivity

For the categorized SkyTEM data 6 and I are computed as 98.7 and 99.3 %, respec-
tively. This shows values close to unity and should not be seen as a real reference,
rather as a benchmark, because the deterministic picture does not account for any
uncertainties. The TProGS simulations based on the two conditioning scenarios both
undersimulate the connectivity metrics. The BH-SkyZ20static scenario yields negative
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deviations of 2.1 and 1.1 %, respectively and the BH-Sky200moving scenario 2.8 and
1.4 %, respectively. The results indicate that 8 and ' show a similar behavior, where I
appears to be decreasingly greater as the proportion increases. Values close to unity
and the very small deviations are in good agreement with the general percolation the-
ory, which sets the percolation threshold to approximately 30 % for 3-D grids (Hovadik
and Larue, 2007).

5.4.4 Facies probability distribution

Figure 9 shows the probability distribution for all discussed conditioning scenarios, with
static (a) and moving (b) sampling, with 25 realizations in each set. The original soft
data distribution has its maximum at approximately 20 % and less than 5% are de-
terministic; 0 or 100 % sand probability. The BH-SkyZ20static scenario simulates ap-
proximately 70 % of the cells with zero change and thus has an extremely poor fit with
the soft dataset and the overconditioning is very prominent. It appears that overcondi-
tioning amplifies the conditioning values to the extremes (e.g. 0.6 is simulated as 1.0
and 0.4 as 0.0, Fig. 6). The BH-Sky500static scenario reproduces the probabilities from
the original soft dataset well, with only approximately 10 % zero change cells. However,
the allocation pattern shows small resemblance with the original dataset (Fig. 7b). BH-
Sky100static scenario gives an intermediate solution, as the probability is better repro-
duced than with the BH-Sky20static scenario, but still, more than 20 % of the cells are
simulated purely deterministic. Nevertheless, the BH-Sky100static scenario is dense
enough to capture the full variability of the system, as indicated by the original SkyTEM
dataset. Additionally the results of the BH-Sky200static scenario are plotted in (a). The
number of purely deterministic simulated cells is decreased to approximately 20 % and
the maximum at 20 % sand probability is close to the original soft dataset. Figure 9b
compares the static with the moving sampling approach for the 100 and 200 m dis-
tance scenarios. The simulated facies probability distribution shows no differences for
the static and moving 100 m distance scenarios. However, at 200 m sampling distance,
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the two sampling techniques are distinguishable, as the moving sampling yields fewer
deterministically simulated cells than the static sampling.

5.4.5 Facies probability — resistivity bias

The results are given in Fig. 10 for the static sampling (a) and the moving sampling
approach (b). The strong amplification of the resulting probabilities originating from
the BH-Sky20static scenario is obvious in (a). The BH-Sky500static scenario per-
forms poorly, especially in high resistivity areas, because those areas are not suf-
ficiently covered by the 500 m sampling distance. A better fit is represented by the
BH-Sky100static scenario, because the amplification is much lower than for the BH-
SkyZ20static scenario, especially for high resistivity areas. On the other hand, low resis-
tivity areas are more amplified than high resistivity areas. The BH-Sky200static sce-
nario gives a satisfying fit with the original fitted curve, especially in high resistivity
areas, which indicates that the high probable sand cells are mostly allocated correctlty
by the model. The simulated facies uncertainty for the low resisitivty cells is rather am-
plified by the BH-Sky200static scenario. Figure 10b investigates the simulation differ-
ences caused by the static and moving sampling approach. The behaviour is similar to
Fig. 9b, because the differences for the 100 m distance scenarios are marginal, while
the BH-Sky200moving scenario generates a slightly lower facies probability — resis-
itivity bias than the BH-Sky200static scenario. The RMSEs between the fitted curve
(Fig. 3) and the simulations show that the BH-Sky200moving and BH-Sky200static
sampling conditioing scenarios perform best, both with a RMSE of 0.06. Comparable
are the BH-Sky100moving and BH-Sky100static sampling conditioing scenarios with
a RMSE of 0.09 and 0.08, respectivley. The BH-Sky20static scenario performs poorest
with a RMSE of 0.2.
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6 Discussion
6.1 TProGS setup

Direct transformation of geophysical data, such as SkyTEM, into a deterministic sub-
surface model is risky, because too much reliance on geophysical mapping can lead
to seriously wrong hydrogeological models (Andersen et al., 2013). The present study
incorporates data from both, high resolution geophysical mapping (SkyTEM) and bore-
holes. Uncertainties are expected in both datasources and the shape of the fitted his-
togram curve reflects those. High uncertainty is associated with the transition zone;
around 50% sand probability. Although the cut off value that divides the SkyTEM
dataset into sand and clay is calibrated, there is a large quantity of high uncertain
cells included which make the measured TPs directly dependent on the cut off value.
Therefore the facies proportion and mean length are very sensitive to the selection of
the cut-off value. As a result, the MCM in the lateral direction, as part of the TProGS
setup, is highly dependent on the way the SkyTEM data is treated.

The SkyTEM dataset used in the present study is a 3-D grid of 20m x20mx2m which
was spatially interpolated from soundings with distances of about 17 m and 50-100 m
along and between the flight lines, respectively. To reduce the overconditioning problem
it might have been preferable to use the direct sounding data instead of the interpo-
lated dataset. A similar effect is achieved by resampling, but here interpolated data
with a higher uncertainty than the direct soundings are used. The amount of SkyTEM
data strongly exceeds the borehole data; thus if one sand observation in a borehole
description is surrounded by mostly low resistivity cells in the SkyTEM data, it can be
expected that the sand observation from the borehole will have little or no influence on
the simulation.

15239

Jaded uoissnosiq | Jadedq uoissnosiq | Jaded uoissnosiq | Jaded uoissnosiq

HESSD
10, 15219-15262, 2013

Challenges in
conditioning a
stochastic geological
model

J. Koch et al.

' I““ II“


http://www.hydrol-earth-syst-sci-discuss.net
http://www.hydrol-earth-syst-sci-discuss.net/10/15219/2013/hessd-10-15219-2013-print.pdf
http://www.hydrol-earth-syst-sci-discuss.net/10/15219/2013/hessd-10-15219-2013-discussion.html
http://creativecommons.org/licenses/by/3.0/

10

15

20

25

6.2 Split sample test

The split sample test analyzes the effects of two conditioning scenarios that lie on both
extreme ends of the data density spectrum. The integration of high resolution geo-
physical data covering the entire model domain and borehole data into one model is
as such a novelty. Both datasources have advantages and disadvantages: borehole
data have a higher data certainty and a finer spatial resolution in the vertical extent to
better represent smaller sand features, but are essentially undersampled in the lateral
extend. On the other hand, SKkyTEM data have a good spatial coverage and therefore
the bigger sand features are well represented, but at the same time the data are as-
sociated with a higher data uncertainty. At this point, four major sources of uncertainty
can be defined: (1) the inversion that transforms the SkyTEM measurement into resis-
tivity, (2) the borehole data, (3) the relationship between lithology and resistivity and
(4) the footprint mismatch between small scale borehole data and large scale SkyTEM
data. So it is precarious to assume the SkyTEM data as true geology, but it can serve
as a reference/benchmark when validating the simulation results. The onlyBH scenario
does not capture all of the main sand features, which are revealed by the SkyTEM sur-
vey: only 20 % of the high resistivity cells, where the resistivity is greater than 70Qm
are simulated correctly. For the onlySky20 scenario only 44 % of the sand descriptions
in the boreholes are simulated correctly, which underlines that the SkyTEM data does
not measure the finer sand features correctly. The conducted split sample test does
not allow to draw firm conclusions on simulation performance, it rather analyses the
agreement between the two dataset propagated through the model.

6.3 Overconditioning

The possibility to assign an uncertainty value to an observation data is an essential
feature in TProGS. It allows translating uncertainty evaluations into the modeling pro-
cess. Problems that are associated with spatially correlated data are identified in this
study. Correlated data are a common problem in hydrogeological investigations, e.g.
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the incorporation of temporally correlated discharge data or spatially correlated data
originating from remote sensing (surface temperature or soil moisture) into the mod-
eling process. We are not aware of previously reported studies where stochastically
generated realizations of subsurface systems have been constrained by cell by cell
soft conditioning data. Especially, it has not previously been reported how TProGS is
able to handle such a conditioning dataset. TProGS stochastically simulates the sub-
surface facies system by utilizing the two mutually dependent steps SIS and simulated
quenching in the tsim module. The SIS simulates cells along a random path. At each
cell a local probability estimate is computed by cokriging the n nearest data or already
simulated cells. The simulated quenching step incorporates the initial configuration
from the SIS. Cells, that are not associated with hard data, are perturbed along a ran-
dom path and the change in category is accepted if an objective function is reduced. It
is not assured if the soft information is considered accordingly for the cokriging of the
local probability estimate in the SIS step nor if it is accounted for in the objective func-
tion used for the simulated quenching. Work around methods have to be developed to
overcome the problems associated with overconditioning. The most intuitive approach
is to thin the original soft dataset by resampling only some of the data and to include
a moving sampling strategy to account for the spatial variation in the original dataset.
Thinning the SkyTEM dataset out and only considering data on a 200 m spaced moving
sampling grid gives the most satisfying results.

6.4 Non-stationarity

Non-stationarity can be identified by subdividing the SkyTEM dataset (Figs. 2 and 4).
It is successfully tested if abundant conditioning data alone is capable of reproduc-
ing the observed non-stationary patterns. The simulation domain is divided into north
and south and the mean simulated sand proportion and mean length of a sand lens
are computed for the sub-domains. The trends are simulated correctly, but the thin-
ner the conditioning data are resampled the closer the alignment between the two
sub-domains is. In a situation of sparse data, e.g. only borehole data for conditioning,
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these non-stationary trends cannot be reproduced correctly. Seifert and Jensen (1999)
present an approach to model non-stationarity, which might be more suitable for sparse
conditioning data. They suggested dividing the model domain into several stationary
sub-domains, and each subdomain is then characterized using independent MCMs.
When subdiving the model domain, care must be taken, that no major features are cut,
because it is then difficult to model them correctly. This approach was tested in the
present study, but results revealed that this method is not easily applicable in situations
of abundant conditioning data, because large coherent sand features are cut by the
sub-division and could not be simulated adequately.

6.5 Performance criteria

Most studies that focus on the stochastic generation of subsurface models do not val-
idate the performance of the simulation results. We identified and tested five perfor-
mance criteria for validating the model performance.

1. Sand proportion: the simulated sand proportions tend to be overestimated by all
simulations (Table 3), with a higher overestimation for the sparse conditioning
dataset. Artificial conditioning data outside the target area honoring the defined
proportion and MCM may help to make the simulation more homogeneous. In that
context, continuous hard conditioning outside the simulation target can be tested.

2. Mean length: the simulated and measured TPs are compared by Carle (1997) and
Carle et al. (1998). Carle et al. (1998) simulate a four category system and the
simulated quenching yields a perfect match between the modeled TPs and the
defined MCM. On the other hand, Carle (1997) underlines that small deviations
are to be expected and shows this by various examples where different SIS and
simulated quenching parameters are tested.

3. Geobody connectivity: in general the connectivity is partly dependent on the pro-
portion. The sand connectivity for the simulation based on the BH-Sky200moving
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scenario is simulated lower and the sand proportion higher in comparison to the
results from the BH-SkyZ20static scenario. This means that the geobody connec-
tivity is not fully depending on the proportion in this study. However it is a more
feasible performance criterion for proportions far below the percolation threshold,
because proportions close to the percolation threshold will automatically be very
close to unity.

We used 25, 10 and 10 realizations to compute the first three performance criteria.
Computing a moving average shows than the mean converges to +2 % deviation to the
final mean after ca. 15 realizations for the first criterion and after ca. 5 realizations for
the second and third criteria, which justifies the selected number of realizations. The
two latter criteria incorporate the computed probability map based on 25 realizations.
Probability maps proved to be a useful tool to investigate the inter variability among
realizations (Alabert, 1987). The results of the onlyBH scenario show the highest inter
variability and a moving average tested at 10 random locations in the grid shows that
after 20 realizations the mean converges to less than +20 % from the final mean and
to less than £10 % after 23 realizations. These numbers are supposed to decrease as
the conditioning data increase and therefore are 25 realizations in the analysis of the
two latter criteria justifiable. The availability of a comprehensive soft dataset allows to
set a benchmark for the two later criteria.

1. Facies probability distribution: this distribution clearly quantifies the problem of
overconditioning, because deterministically simulated cells are easily identified.
However a good agreement between the simulated facies probability distribution
and the original soft dataset does not ensure that the allocation pattern of the
simulated probability is correct. This becomes evident when validating the results
of the BH-Sky500static scenario.

2. Facies probability — resistivity bias: this validates if the fitted histogram in the
histogram probability matching method is reproduced by the simulation. The sim-
ulated facies probability should be in agreement with a corresponding resistivity
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observation to ensure that the spatial allocation pattern is simulated correctly. All
bins are weighted the same, neglecting the inequality of data in each bin.

Table 4 compiles the five performance criteria for two different TProGS simulations: the
BH-SkyZ20static- and the BH-Sky200moving scenario. The advantage of using multiple
performance criteria is that concentrating on a single criterion may reveal an alleged
good result, while another criterion attests a poor performance to the same simula-
tion. Therefore a weighted and balanced analysis of the performance criteria helps
to identify the best result. In this study, where abundant data are available, a good
performance of the two latter criteria is as important as simulating accurate mean
length/proportion. For example, if only considering sand proportion and mean length,
it can be argued that the validation favors the BH-SkyZ20static scenario. However both,
the facies probability distribution as well as the facies probability — resistivity bias attest
poor performance. On the other hand, if interpreting the probability distribution only, it
seems that the validation favors the BH-Sky500static scenario. Collectively, the con-
clusion is that the BH-Sky200moving scenario generates the overall most balanced
results. The stated performance criteria could further be used in a calibration process
to identify a resampled conditioning dataset that generates an even more satisfying set
of realizations.

7 Conclusions

The novelty of this study is the incorporation of a vast conditioning dataset in the
stochastic modeling process and the definition and testing of a set of performance
criteria to a TProGS simulation. The categorized SKyTEM dataset is used to define
the lateral model of spatial variability, whereas borehole data are used for the vertical
direction. Care must be taken when integrating two individual datasets into one condi-
tioning dataset, because a good agreement cannot always be granted. Non-stationary
geostatistical properties like facies proportions and mean lengths can be identified. It is
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shown that in the case of abundant conditioning data TProGS is capable of reproducing
the non-stationary trends. Spatially correlated data causes the problem of overcondi-
tioning, where TProGS simulates a rather deterministic picture of the facies distribution
and measured facies uncertainties are not reproduced. Resampling the soft dataset
and including moving sampling is an intuitive approach to work around the problem
of overconditioning. The BH-Sky200moving scenario gives the best tradeoff between
the simulated facies distribution and the simulated probability — resistivity bias and is
also capable of accounting for the non-stationary trends during the simulation. Five
performance criteria are identified in this study: (1) sand proportion, (2) mean length,
(3) geobody connectivity, (4) facies probability distribution and (5) facies probability —
resistivity bias. The strength of these criteria lies in the integration of all individual crite-
ria to find the most balanced results. These performance criteria help to describe and
quantify the accuracy of a set of realizations and could be applied in future geostatisti-
cal studies to assess the performance of the stochastic simulation.
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Research.
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Table 1. Split sample test showing how many of the high probable sand cells (resistivity
> 60Qm) are simulated with corresponding sand probabilities (> 70 %) or fully deterministic
(probability = 1.0) among 25 realizations. Conditioned to onlyBH and onlySky20. The last col-
umn shows how many of the areas that are shown as sand in the boreholes are simulated with
sand probabilities > 85 %.

Conditioning  Prob. of sand > 0.7 Prob. of sand = 1.0 Prob. of sand > 0.85

Scenario AND AND AND
resistivity > 60Qm  resistivity > 60 Qm borehole = sand
onlyBH 20.1 % 1.34 % 74.3%
onlySky20 99.0 % 59.1 % 44.0%
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Table 2. Proportion of high probable sand cells (resistivity > 60 Qm) that are simulated with
corresponding sand probabilities (> 70 %) or fully deterministic (probability = 1.0) for six condi-
tioning datasets based on 25 realizations.

Conditioning Prob. of sand > 0.7 Prob. of sand = 1.0
Dataset AND AND

resistivity > 60Qm  resistivity > 60 Qm
BH-Sky20static 97.9% 63.8 %
BH-Sky100static/ o o o
BH-Sky100moving 84.1%/87,3 10.4%/10.1%
BH-Sky200static/ o o ° o
BH-Sky200moving 75.8%/71.0% 5.4%/3.6 %
BH-Sky500static 32.7% 1.5%
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Table 3. Simulated and defined sand proportions for the total domain and two sub-domains
based on two simulations with different soft conditioning datasets (BH-Sky20static and BH-

Sky200moving), based on 25 realizations.

Mean sand
proportion (%)
based on 25
realizations

BH-Sky20static

Total South North

Defined
Simulated
Deviation

23 30 13
25.0 30.7 13.8
+2.0 +0.7 +1.8

BH-Sky200moving

Defined
Simulated
Deviation

23 30 13
29.3 33.7 21.5
+6.3 +3.7 +8.5
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Table 4. The five performance criteria and categorized SkyTEM data as benchmark that are
applied to the two simulations with different soft conditioning datasets: cell by cell soft condi-
tioning and 200 m moving sampling soft conditioning; both including borehole data. The first
three criteria are expressed as deviation to the benchmark.

Performance Categorized BH-Sky20static BH-Sky200moving
Criteria SkyTEM
1. Sand 23% +2% +6.3%
proportion
2. Mean length

500m -21%/-20% -37%/-37%
(X/Y)
3. Geobody

98.7%/99.3% -21%/-11% -28%/-14%
Connectivity (/) / / /
4. Facies Poor (approx. Satisfying (approx.
probability n.a. 70 % cells 15 % cells with
distribution with zero change) zero change)
5. Facies
probab”ity- n.a. 0.20 0.06
resistivity bias
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Fig. 2. The median resistivity values from the SkyTEM data for the 4- and 16-subarea grid.
Dark colors indicate a high median (max: 43.2 and 45.0 Qm for the 4- and 16-subarea grid,
respectively), light colors a low median (min: 32.0 and 29.5 Qm for the 4- and 16-subarea grid,
respectively) and white colors the absence of data. Additionally the location of the boreholes,
the river network and the delineated glacial structure. The extent is 9km in X and 12km in

Y direction.
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Fig. 3. The bias corrected histogram curve: the calibrated cut off value (46 Qm) is added to the
histogram and the fitted curve is forced to honor it He et al. (2013).
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Fig. 4. The computed transition probabilities in vertical and horizontal direction and the fitted
MCM: vertical 5m, horizontal 500 m mean length of a sand lens and 23 % sand proportion.
Additionally the fitted MCM for the north- and south-sub-domain are plotted for the vertical and
horizontal sand-sand transitions: 2m, 400 m, 13 % and 5m, 600 m, 30 %, respectively.
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Fig. 5. Upper panel: two individual realizations for two different conditioning scenarios: onlyBH
(a) and onlySky20 data (b). Lower panel: probability maps for the two scenarios (c) and (e)
showing the probability of sand in each cell based on 25 realizations. The derived sand prob-
ability which is used for conditioning the simulation is shown in (d). All maps show data at an
elevation of 49 m.
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Fig. 6. The simulated vs. the conditioned sand probability over the vertical extent at one bore- &
hole (98.918), located in the south western part of the glacial structure. The results originate & _
from the two different soft conditioning scenarios: onlyBH and onlySky20 (based on 25 realiza- Ry
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Fig. 7. (a) 100 m (small dots) and 500 m (big dots) sampling grids for thinning out the condi-
tioning dataset; (b)—(e) probability of sand at an elevation of 49 m for SkyTEM dataset (b), and
for static 20, 200 and 500 m conditioning (c)—(e) red colors represent high sand probability and
blue colors low sand probability (based on 25 realizations).
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Fig. 8. The simulated transition probabilities for the south-, north-, and total-domain are com-
pared with the SkyTEM data and the fitted MCM. The results for two soft conditioning dataset
are shown: BH-Sky20static and BH-Sky200moving. The simulated TP and the MCM at lag
100 m are compared to quantify the underestimation of a sand lens. The TP values are mean
values based on 10 realizations. The defined length of a sand lens (X) and the mean simulated
length for the BH-Sky20static (Y') and BH-Sky200moving scenario (Z) are given in each graph.

(Xm—=Ym/Zm).
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Fig. 9. The simulated facies probability distributions based on sets of realizations conditioned
to differently sampled soft datasets (based on 25 realizations): (a) static sampling at different
sampling distances and (b) stationary and moving sampling at different sampling distances.
Also showing the sand probability distribution of the original soft dataset which is desired to be

reproduced.

.p=Sand » .p=Sand )
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Fig. 10. The simulated facies probability — resistivity bias based on sets of realizations con-
ditioned to differently sampled soft datasets (based on 25 realizations): (a) static sampling at
different sampling distances and (b) stationary and moving sampling at different sampling dis-
tances. The simulated sand probability is paired with the original resistivity value, grouped into
5Qm bins and then plotted as median for each bin. Also showing the observed data and the
fitted curve from the histogram which is desired to be reproduced.
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